Nonnegative Matrix Factorization with Earth Mover’s Distance Metric

نویسندگان

  • Roman Sandler
  • Michael Lindenbaum
چکیده

Nonnegative Matrix Factorization (NMF) approximates a given data matrix as a product of two low rank nonnegative matrices, usually by minimizing the L2 or the KL distance between the data matrix and the matrix product. This factorization was shown to be useful for several important computer vision applications. We propose here a new NMF algorithm that minimizes the Earth Mover’s Distance (EMD) error between the data and the matrix product. We propose an iterative NMF algorithm (EMD NMF) and prove its convergence. The algorithm is based on linear programming. We discuss the numerical difficulties of the EMD NMF and propose an efficient approximation. Naturally, the matrices obtained with EMD NMF are different from those obtained with L2 NMF. We discuss these differences in the context of two challenging computer vision tasks – texture classification and face recognition – and demonstrate the advantages of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric-Preserving Reduction of Earth Mover's Distance

We prove that the earth mover’s distance problem reduces to a problem with half the number of constraints regardless of the ground distance, and propose a further reduced formulation when the ground distance comes from a graph with a homogeneous neighborhood structure. We also propose to apply our formulation to the non-negative matrix factorization.

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Determining a Suitable Metric when Using Non-Negative Matrix Factorization

The Non-negative Matrix Factorization technique (NMF) has been recently proposed for dimensionality reduction. NMF is capable to produce a regionor partbased representation of objects and images. The positive space defined with NMF lacks of a suitable metric and this paper experimentally compares NMF to Principal Component Analysis (PCA) in the context of classification trying to determine the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009